SCION Secure Next-generation Internet Architecture

Adrian Perrig
Network Security Group, ETH Zürich

scion-architecture.net

The **Internet** is perceived to be like the pyramids: **monumental structure** that has **stood the test of time** and **cannot be changed**

Problem 1: Non-Scalability of Trust

Pervasive Trust in Early Internet

"There were only two other Dannys on the Internet then. I knew them both. We didn't all know each other, but we all kind of trusted each other, and that basic feeling of trust permeated the whole network." — Danny Hillis, about the Internet in the early 1980s, TED talk, Feb 2013.

Non-Scalability of Trust

- As the Internet has grown to encompass a large part of the global population, not everyone trusts everyone else on the Internet any more
- The heterogeneity of global environment complicates entity authentication infrastructures
 - Relevant in this context: authentication of routing updates, DNS replies, TLS certificates
- Two models for trust roots for authentication
 - Monopoly model
 - Oligarchy model

Monopoly Model for Trust Root

- Single root of trust (i.e., root public key) that is globally accepted to authenticate entities
- Examples: RPKI for BGPSEC or DNSSEC rely on a public key that forms root of trust
 - All AS certificates or DNS records are authenticated based on root of trust
- Problems
 - Entire world needs to agree on entity to hold root of trust
 - Single point of failure
 - Inefficient revocation / update mechanisms

Oligarchy Model for Trust Root

- Numerous roots of trust that are globally accepted to validate entities
- Example: TLS PKI relies on > 1000 roots of trust
 - TLS certificate accepted if signed by any root of trust
- Problems
 - Single point of failure: any single compromised root of trust can create any bogus TLS certificate
 - Revocation / update is handled through OS or browser software update

Proposed Approach: Isolation Domains

- Observation: subset of the Internet can agree on roots of trust → form Isolation Domain with that root of trust
- Authenticate entities within each Isolation Domain
- Users & domains can select Isolation Domain based on root of trust
- Also supports modern log-based PKI approaches: CT, AKI, ARPKI, ...
- Challenge: retain global verifiability

Who controls Internet Paths?

- Current Internet offers limited control of paths
 - Border Gateway Protocol (BGP) floods announcements for destinations

Who controls Internet Paths?

- Current Internet offers limited control of paths
 - Border Gateway Protocol (BGP) floods announcements for destinations
 - No inbound traffic control

Who controls Internet Paths?

- Current Internet offers limited control of paths
- Paths can be hijacked and redirected

Who should control Paths?

- Clearly, ISPs need some amount of path control to enact their policies
- How much path control should end points (sender and receiver) have?
 - Control is a tricky issue ... how to empower end points without providing too much control?

Transparency: Internet Paths

- Today, sender cannot obtain guarantee that packet will travel along intended path
- Impossible to gain assurance of packet path
 - Because router forwarding state can be inconsistent with routing messages sent

Proposed Approach: Packet-Carried State

- Packets carrying forwarding information provides path transparency
 - Note: orthogonal issue to path control, as network can still define permitted paths

Problem 4: Availability

Poor Availability

- Well-connected entity: 99.9% availability (86 s/day unavailability) [Katz-Bassett et al., Sigcomm 2012]
- Numerous short-lived outages due to BGP route changes
 - Route convergence delays
- Outages due to misconfigurations
- Outages due to attacks
 - E.g., prefix hijacking, DDoS

Is a 10s Outage per Day Harmful?

- 99.99% reliability -> average 8.6 s/day outage
 - Level of availability achieved by Amazon datacenter
- Insufficient for many applications
 - Critical infrastructure command and control
 - E.g., air traffic control, smart grid control
 - Internet-based business
 - Financial trading / transactions
 - Telemedicine

Proposed Approach: Replace BGP

- Border Gateway Protocol (BGP) is the interdomain routing protocol in today's Internet
- BGP(SEC) suffers several fundamental problems
 - Trust: Uses single root of trust (RPKI / BGPSEC)
 - Control: Almost no path choice by end points
 - Transparency: Impossible to obtain path guarantee
 - Availability
 - Frequent periods of unavailability when paths change
 - Slow convergence during iterative route computation
 - Susceptible to attacks and misconfigurations

Evolutionary vs. Revolutionary Change

- Revolutionary approach is necessary
 - Some problems are fundamental, cannot be fixed through evolution
- Revolutionary approach is desirable
 - A fresh redesign can cleanly incorporate new mechanisms
- Revolutionary technology change is easy through evolutionary deployment
 - If IP is relegated to provide local (intra-domain) communication, only a small fraction of border routers need to change to replace BGP
 - Simultaneous operation with current Internet possible
 - Strong properties provide motivation for deployment

Proposed Future Internet Architectures

- General FIAs
 - XIA: enhance flexibility to accommodate future needs
 - MobilityFirst: empower rapid mobility
 - Nebula (ICING, SERVAL): support cloud computing
 - NIMROD: better scale and flexibility for Internet
 - NewArch (FARA, NIRA, XCP)
- Content-centric FIAs: NDN, CCNx, PSIRP, SAIL / NETINF
- Routing security: S-BGP, soBGP, psBGP, SPV, PGBGP, H-NPBR
- Path control: MIRO, Deflection, Path splicing, Pathlet, I3,
 Segment Routing
- Others
 - SDN: flexible intra-domain networking
 - ChoiceNet, HLP, HAIR, RBF, AIP, POMO, RINA, ANA, ...

SCION Project

- SCION: Scalability, Control and Isolation On Next-Generation Networks [IEEE S&P 2011]
- Current main team: Daniele Asoni, Lorenzo Baesso, David Barrera, Cristina Basescu, Chen Chen, Laurent Chuat, Sam Hitz, Jason Lee, Tae-Ho Lee, Yue-Hsun Lin, Steve Matsumoto, Chris Pappas, Raphael Reischuk, Stephen Shirley, Pawel Szalachowski, Yao Zhang

SCION Architectural Design Goals

- High availability, even for networks with malicious parties
 - Adversary: access to management plane of router
 - Communication should be available if adversary-free path exists
- Secure entity authentication that scales to global heterogeneous (dis)trusted environment
- Flexible trust: operate in heterogeneous trust environment
- Transparent operation: Clear what is happening to packets and whom needs to be relied upon for operation
- Balanced control among ISPs, Senders, and Receiver
- Scalability, efficiency, flexibility

SCION Isolation Domain (ISD)

- SCION Isolation Domain requirements
 - Region which can agree on a common root of trust
 - Set of ISPs to operate Isolation Domain Core to manage ISD
 - Root of trust and Autonomous Domain (AD) certificates
 - Manage core path and beacon servers
 - Other ISDs need to agree to connect as peer or as provider
- Open research issue exactly how to best structure ISDs: political and legal issues arise
 - Possible partition is along geographical regions

SCION Isolation Domain (ISD)

- SCION Isolation Domain composition
 - ISD Core with ISD Core ADs
 - Other ISP ADs or end-domain ADs

Beaconing for Route Discovery

- Periodic Path Construction Beacon (PCBs)
 - Scalable & secure dissemination of path/topological information from core to edge
 - K-wise multi-path flood to provide multiple paths

SCION Forwarding (Data Plane)

- Domains register paths at DNS-like server in ISD Core
- End-to-end communication
 - Source fetches destination paths
 - Source path + destination path → end-to-end path

Packet contains forwarding information

Advantages

Isolates forwarding from routing

No forwarding table at routers

- Transparent forwarding
- Balanced route control

Path Construction and Usage

Path Construction Beacon (PCB) construction:

```
\begin{aligned} & \text{PCB}_1 = < \text{T}_{\text{exp}} \text{ Int}_1 \text{ O}_1 \text{ S}_1 > \\ & \text{Opaque field O}_1 = \text{Int}_1 \text{ MAC}_K (\text{T}_{\text{exp}} \text{ Int}_1) \\ & \text{Signature S}_1 = \{\text{PCB}_1\}_{K'} \end{aligned}
```

- PCB₂ = < T_{exp} Int₁ O₁ S₁ Int₂ Int₃ O₂ S₂ > Opaque field O₂ = Int₂ Int₃ MAC_K(O₁ T_{exp} Int₂ Int₃) Signature S₂ = { PCB₂ }_{K'}
- AD receiving PCB₂:
 - Verify signatures
 - Use opaque fields O₁ O₂ to send packet to ISD Core

Inter-ISD Communication

Inter-ISD Communication

- ISD Cores recursively execute SCION beaconing to create paths amongst each other
 - Each ISD core initiates PCB to neighboring ISD cores
 - Propagates ISD Core PCBs to create inter-ISD-core path
- Endhosts can request path to reach any other ISD
- Endhosts combine up path + inter-ISD-core path + down path
 - Provides transparent operation, as path is known

Shortcuts through Peering Links

Handling Link Failures

- SCION clients use multi-path communication by default, other paths are likely to still function
- Path construction beacons are constantly sent, disseminating new functioning paths
- Link withdrawal message sent ...
 - ... upstream to cause path servers to remove paths with broken link
 - ... downstream to cause beacon servers to remove paths with broken link

SCION Implementation Status

- Full V1.0 specification almost completed
- 3rd generation C/C++ implementation
- 4th generation: Python implementation
- High-speed router implementation switching 120Gbps on off-the-shelf PC
- So far ~50 person-years of effort invested
- Growing testbed

SCION Packet Header

0-7	8-15	16-23	24-31	32-39	40-47	48-55	56-63
Type Vers. Src Ty	pe Dst Type	Tota	l Len	TS*	Curr OF*	Next Hdr.	HDR Len
Source Address (variable size)							
Destination Address (variable size)							
Info EXP		Гіте	ISD) ID	hops	reserved	
Opaque Field (0)							
Next Ext.	Ext Hdr Len	extension-related data					
more extension-related data							
Next Ext.	Ext Hdr Len	extension-related data					
L4 Proto							

SCION Trust Root Management

- Each ISD manages their own trust roots
 - Used to create per-AD certificates
 - AD certificates used to verify beacon messages
- Trust Root Configuration (TRC) file serves as root of trust for ISD
 - TRC file specifies public keys of trust root and policy for TRC file update
 - Thresholds enable revocation and re-authentication of new TRC files
 - Beacon messages quickly disseminate new TRC files
- Assumption: ISDs cross-sign TRC files

Trust Root Config (TRC): ISD Root-of-Trust

- Each ISD has a TRC file
 - Each AD is verified based on trust roots in TRC

ISD EU
TRC file version N
A cert, B cert, C cert
CA1 cert
Update: at least 2
Sigs with keys of TRC
version N-1

{ D cert K_{A-1}

 $\{ CH ISD TRC \}K_{\Delta^{-1}}$

TRC File Update

- New TRC file version N+1 signed by threshold number of keys from version N
- SCION beaconing process distributes new TRC file

ISD EU
TRC file version N
A cert, B cert, C cert
CA1 cert
Update: at least 2
Sigs with keys of TRC
version N-1

ISD EU
TRC file version N+1
A cert, B cert, C cert
CA1 cert
Update: at least 2
Sigs with keys of TRC
version N

TRC File Summary

- Per-ISD TRC file enables heterogeneous trust roots
- TRC file update mechanism enables efficient update and revocation
 - Tens of seconds to update / revoke roots of trust network-wide
- Observation: network architecture should provide mechanism for updating trust roots!

Packet-Carried Forwarding State

- Observation: per-flow state on routers causes many issues
 - State exhaustion attacks [Schuchard et al., NDSS 2011]
 - State inconsistencies complicate protocol design (e.g., TTL to handle forwarding loops)
 - Complicates router design
- Mantra: no per-flow state in the fast path
 - Packet-carried forwarding state avoids per-flow state on routers

Uses of Packet-Carried Forwarding State

- Stable and predictable forwarding path in packet header tremendously beneficial
 - Lightweight anonymity and privacy ["LAP", IEEE S&P 2012]
 - Stateless network capabilities for DDoS defense ["STRIDE", AsiaCCS 2013]
 - Path validation ["OPT", Sigcomm 2014]
 - Fault localization
 - Multipath forwarding

Incremental Deployment Aspects

- Current ISP topologies consistent with SCION ISDs
- Minor changes for ISPs
 - SCION edge router deployment
 - Beacon / certificate / path server deployment (inexpensive commodity hardware)
 - Regular MPLS/IP/SDN forwarding internally
 - IP tunnels connect SCION edge routers in different ADs
- Minor changes in end-domains
 - IP routing used for basic connectivity
 - SCION gateway enables legacy end hosts to benefit from SCION network

Incremental Deployment

Only border routers need to adopt SCION

DENA Project

Initial deployment without any changes to host

SCION Summary

- Complete re-design of network architecture resolves numerous fundamental problems
 - BGP protocol convergence issues
 - Separation of control and data planes
 - Isolation of mutually untrusted control planes
 - Path control by senders and receivers
 - Simpler routers (no forwarding tables)
 - Root of trust selectable by Isolation Domain
- SCION is an isolation architecture only for the control plane, in the data plane it is a transparency architecture

Opportunities / Trends

- Mobility
 - SCION supports in-connection path update
 - Multipath system immediately makes use of new path
 - DNS / path server system enables dynamic updates
- SDN
 - SCION can work with SDN within domains
 - SCION has properties of an intra-domain SDN
- Content-centric communication support
- Cloud computing

SCION Dangers

- Too many top-level ISDs
 - Too many ISPs part of ISD core
- Large packet header size
 - Too many extensions used
- Higher complexity (Extensions, PKI)
- Extremely high path fluctuations, changes

SCION Stakeholder Pros and Cons

- Manufacturers
 - ✓ Sale of additional equipment
- ISPs
 - ✓ New revenue streams through service differentiation
 - ✓ High-availability service offerings, powerful DDoS defenses
 - ✓ Inter-domain Service Level Agreement (SLA)
 - ✓ Resilient to attacks and configuration errors
 - ✓ Incremental update, only new edge routers needed
 - ✓ Same business models as with BGP (peering links, customer provider)
 - ✓ BGP routing policies can be emulated, extended
- Consumers
 - ✓ Faster webpage downloads
 - ✓ Efficient anonymous communication
 - ✓ Trust agility, choice of trust roots
 - → Software / HW upgrade
- Government
 - ✓ High reliability and availability for critical services
 - ✓ Selectable roots of trust, no single global root of trust
 - ✓ Verifiable router hardware

Conclusion

- Deployment of a new Internet architecture is necessary and possible
 - High-value Internet uses need strong network properties
 - New architecture can run along with current Internet
- Community effort needed to solve abundance of research challenges
 - Reliable operation with mutually untrusted operators
 - Anonymous communication
 - Network neutrality
 - DDoS attacks

Thanks to SCION Team Members!

