Cryptography 4 People

where crypto & security should be heading

Jan Camenisch

IBM Research - Zurich

jca@zurich.ibm.com, @JanCamenisch, ibm.biz/jancamenisch

Facts

33% of cyber crimes, including identity theft, take less time than to make a cup of tea.

Facts

10 Years ago, your identity information on the black market was worth \$150. Today....

Facts

\$15'000'000'000 cost of identity theft worldwide (2015)

Attackers hide easily in the vast of cyberspace

...computers never forget

- Data is stored by default
- Data mining gets ever better
- Apps built to use & generate (too much) data
- New (ways of) businesses using personal data

- Humans forget most things too quickly
- Paper collects dust in drawers

But that's how we design and build applications!

Learnings from Snowden – Very Short Summary

Massive scale mass surveillance

- Meta data vs plain texts
- Google's data from companies (e.g., Google), Industrial "collaborations", industrial espionage
- But also from underwater cables

Weak access control to (the large amount of) collected data (security clearance)

Technical sophistication (hardly a surprise)

- Rigged equipment, chips, etc
- Redundancy of access to corp. data
- Subverted standards (PRG)
- Control of CAs → control of network

Learnings from Snowden – Take Aways

Not by breaking encryption schemes! But using insecurity of systems, etc.

However, Snowden had limited access to docs (no crypt-analysis reports)

Many things doable by ordinary hackers or somewhat sophisticated crooks

- Some of CA infiltration
- Stealing data at rest

Other things require large budget and organization

- FPGA, ASICS
- Deliberate weakening of infrastructure (PRG standards, etc) very bad idea

So it seems our environment is even nastier...

Security & Privacy is not a lost cause!

We need paradigm shift:

build stuff for the moon rather than the sandy beach!

Security & Privacy is not a lost cause!

That means:

- Use only minimal data necessary
- Encrypt every bit and keep it like that
- Attach usage policies to each bit

Good news: Cryptography allows for that!

Cryptography to the Aid!

Mix Networks Oblivious Transfer

Searchable Encryption

Onion Routing

Confirmer signatures
Anonymous Credentials

Group signatures

Pseudonym Systems

OT with Access Control

e-voting

Priced OT

Blind signatures

Private information retrieval

Secret Handshakes

Homomorphic Encryption

Cryptography to the Aid a few examples of rocket science

Multi Party Computation

Data Protection

Secure Multi Party Computation for Data Protection

- Can be done for any function typically not considered efficient.
- Two or three parties protocols today can be very efficient
 - e.g., computing AES in 100ms 3PC with one party corrupt

Multi Party Computation – Basic Principles

Evaluate Circuit gate per gate with distributed protocol

Multi Party Computation – Basic Principles

Main approaches:

- Computation of gates
 - typically for free
 - x requires protocols
- Encrypted data under shared key
 - (Fully) homomorphic encryption...
- Secret-share data, compute with shares

Paper-world approach:

- store password
- better, store hash of password

Password (hashes) useless against offline attacks

- Human-memorizable passwords are inherently weak
- NIST: 16-character passwords have 30 bits of entropy ≈ 1 billion possibilities
- Rig of 25 GPUs tests 350 billion possibilities / second, so ≈ 3ms for 16 chars
- 60% of LinkedIn passwords cracked within 24h

Homomorphic Encryption

Encryption scheme

$$KGen(I) \rightarrow (PK, SK)$$

$$C = \operatorname{Enc}_{PK}(m)$$

$$m = Dec_{sk}(c)$$

Plaintext homomorphism

$$Enc_{PK}(m1) \otimes Enc_{PK}(m2)$$

 $Enc_{PK}(m1*m2)$ $Enc_{PK}(m^2)$

$$Enc_{PK}(m) \Leftrightarrow Enc_{PK}(m) = Enc_{PK}(m)^2 \iff$$

Secret key homomorphism

$$Dec_{SK1}(Dec_{SK2}(Enc_{PK}(m))) = m = Dec_{SK1}(Dec_{SK2}(Enc_{PK}(m)))$$

Account Setup

- Result 1 if password match, random otherwise
 - With ElGamal, each server makes two exponentiations only
- Passwords safe as long as not all servers are hacked
 - off-line attacks no longer possible
 - on-line attacks can be throttled

From password to cryptographic keys

- Get key share from if password check succeeded
- Decrypt all your files on phone (or stored in the cloud, etc)

From password to cryptographic keys

[CLN12,CLLN14,CEN15]

- One of the servers could be your smart phone, laptop, ...
- Get key share from if password check succeeded
- Decrypt all your files on phone (or stored in the cloud, etc)

Cryptography to the Aid an example of rocket science

Authentication without Identification

Data Minimizing Authorization w/ ABCs

- Service provider tells user what attribute are required
- User transforms credentials into a token with just these attributes
- Service provider can verify token w.r.t. issuers' verification keys

Cryptography to the Aid an example of rocket science

Convertible Pseudonyms

How to maintain related yet distributed data?

Example use case: social security system

- Different entities maintain data of citizens
- Eventually data needs to be exchanged or correlated

IoT Use case – Car Example

Many other different use case: IoT, Industry 4.0, Home Appliances, Metering, ...

Requirements

- Data originating from (or being related to) an individual
- Interactions with many different parties who share, exchange, and store data
- Data needs to be protected
 - Stored in encrypted form
 - Anonymized
 - Stored distributedly (different data base, different data controller)
 - User needs to be informed where data resides, how it is processed etc
- Still different parties want to use data
 - No too much anonymized, otherwise not usable anymore
 - If somewhat anonymized, how can user still keep track?

How can we do this?

Globally Unique Identifier

Globally Unique Identifier

user data is associated with globally unique identifier **Doctor A** e.g., social security number, insurance ID ID Data Alice. 1210 different entities can easily share Record of Bob.0411 Bob.0411? & link related data records Carol.2503 Hospital ID **Data** simple data exchange Bob.0411 no control about data exchange if records are lost, pieces can be linked together Carol.2503 data has high-value → requires strong protection Dave. 1906

Using Privacy-ABCs to derive Identifiers

Dave. 1906

Using Privacy-ABCs to derive Identifiers

- Use credential to ensure consistency

octor A		
	ID	Data
	Alice.1210	
	Bob.0411	
	Carol.2503	

Hospital

ID ID	Data
Bob.0411	
Carol.2503	
Dave.1906	

Using Privacy-ABCs to derive Identifiers

- Use Domain pseudonym
- Use credential to ensure consistency
- Exchanging records via user and credentials
 - data exchange needs to involve user
 - + control about data exchange
 - lost records are cannot be linked together

Hospital

[*] ID	Data
Bob.0411	
Carol.2503	
Dave.1906	

- central converter derives independent server-local identifiers from unique identifier
- user data is associated with (unlinkable) server-local identifiers aka "pseudonyms"
- only converter can link & convert pseudonyms

→ central hub for data exchange

Converter

Main ID	ID-A	ID-H
Alice.1210	Hba02	7twnG
Bob.0411	P89dy	ML3m5
Carol.2503	912uj	sD7Ab
Dave.1906	5G3wx	y2B4m

Doctor A

ID	Data
Hba02	
P89dy	
912uj	

Hospital

ID	Data
ML3m5	
sD7Ab	
y2B4m	

- central converter derives independent server-local identifiers from unique identifier
- user data is associated with (unlinkable) server-local identifiers aka "pseudonyms"

- central converter derives independent server-local identifiers from unique identifier
- user data is associated with (unlinkable) server-local identifiers aka "pseudonyms"

- central converter derives independent server-local identifiers from unique identifier
- user data is associated with (unlinkable) server-local identifiers aka "pseudonyms"

Blindly Translatable Pseudonyms

Doctor A		
	ID	Data
(-	Hba02	
•	P89dy	
	912uj	

Hospital

Goal:

- Convert pseudonyms without seeing them
- Control frequency different orgs ask for conversions

L ID	Data
ML3m5	
sD7Ab	
y2B4m	

Blindly Translatable Pseudonyms [CL'15]

Idea:

- Pseudonyms need to have mathematical relation

$$nym_{(U,A)} = f\chi(ID_{U}, k_{A})$$

- To convert:
 - Doctor encrypts pseudonym under Hospital's encryption key
 - Converter operates translation on encrypted pseudonyms → homomorphic encryption

Instantiation – Pseudonym Generation

converter χ and server S_A jointly to compute $nym_{(U,A)} = f_{\chi}(ID_{U,k_A})$

1) compute global core identifier using secret key k

$$z_U \leftarrow PRF(k,ID_U)$$

2) compute server-local pseudonym using server-specific secret key x_A

$$\text{nym}_{U,A} \leftarrow z_U^{XA} \qquad \text{i.e., } f_{\chi}(\text{ID}_{U},k_A) = \text{PRF}(k,\text{ID}_{U_i})^{XA}$$

server S_A wishes to convert a pseudonym nym_{U,A} for server S_B

 S_A 's input: $nym_{U,A}$, pk_B

Server A

 sk_A

Converter χ

k, sk_{χ} , for each server: x_A , x_B , x_C , ...

Server B

 sk_B

server S_A wishes to convert a pseudonym nym_{U,A} for server S_B

server S_A wishes to convert a pseudonym $nym_{U,A}$ for server S_B

server S_A wishes to convert a pseudonym $nym_{U,A}$ for server S_B

Converter χ

$$C' \leftarrow Dec(sk_{\chi}, C)$$

$$C'' \leftarrow C'^{\Delta}$$
 with $\Delta = x_B/x_A$

C" = Enc(pk_B,
$$nym_{U,A}$$
) x_B/x_A

- = Enc(pk_B, z_U^{XA}) x_B/x_A
- = Enc(pk_B , $z_{II}^{XA*xB/xA}$)
- = Enc(pk_B, nym_{iU,B})

 $C \leftarrow Enc(pk_{\chi}, (Enc(pk_{B}, nym_{U,A}))$

Server A sk_A

Server B sk_B

Still need to add proofs of correctness:

- 1) signatures on so that Server A can proof correct input
- 2) sign encrypted messages

Conclusion

Further Research Needed!

Provably secure protocols

- Properly modeling protocols (UC, realistic attacks models, ...)
- Verifiable security proofs
- Retaining efficiency

Securing the infrastructure & IoT

- "ad-hoc" establishment of secure authentication and communication
- audit-ability & privacy (where is my information, crime traces)
- security services, e.g., better CA, oblivious TTPs, anon. routing, ...

Further Work Needed!

Towards a secure information society

- Society gets shaped by quickly changing technology
- Consequences are hard to grasp yet
- We must inform and engage in a dialog

Conclusion

- Much of the needed technology exists
- ... need to use them & build apps "for the moon"
- ... and make apps usable & secure for end users

Let engage in some rocket science!

Thank you!

Joint work w/ Maria Dubovitskaya, Anja Lehmann, Anna Lysyanskaya, Gregory Neven, and many many more.

jca@zurich.ibm.com

@JanCamenisch

ibm.biz/jancamenisch

